IMBDX 메인으로

기본 H1

기본 H2

기본 H3

핵심기술

보이지 않는 암을 빠르고 정확하게 발견할 수 있습니다.

논문

게시물 목록
번호 년도 제목 저널명 링크
23 2024

Varlitinib and Paclitaxel for EGFR/HER2 Co-expressing Advanced Gastric Cancer: A Multicenter Phase Ib/II Study (K-MASTER-13)

Abstract   Purpose Varlitinib is a pan-human epidermal growth factor receptor (HER) inhibitor targeting epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), and HER4. We present a phase Ib/II study of a combination of varlitinib and weekly paclitaxel as a second-line treatment for patients with EGFR/HER2 co-expressing advanced gastric cancer (AGC).   Materials and Methods Patients whose tumors with EGFR and HER2 overexpression by immunohistochemistry (≥ 1+) were enrolled. Varlitinib and paclitaxel were investigated every 4 weeks. After determining the recommended phase II dose (RP2D) in phase Ib, a phase II study was conducted to evaluate the antitumor activity.   Results RP2D was treated with a combination of varlitinib (300 mg twice daily) and paclitaxel. Among 27 patients treated with RP2D, the median progression-free survival and overall survival (OS) were 3.3 months (95% confidence interval [CI], 1.7 to 4.9) and 7.9 months (95% CI, 5.0 to 10.8), respectively, with a median follow-up of 15.7 months. Among 16 patients with measurable disease, the objective response rate (ORR) and disease control rate were 31% and 88%, respectively. Patients with strong HER2 expression (n=8) had a higher ORR and longer OS, whereas those with strong EGFR expression (n=3) had poorer outcomes. The most common adverse events (AEs) of any grade were neutropenia (52%), diarrhea (27%), aspartate aminotransferase/alanine transaminase elevation (22%), and nausea (19%). No treatment-related deaths or unexpected AEs resulting fr|om treatment cessation were observed in patients with RP2D.   Conclusion A combination of varlitinib and paclitaxel displayed manageable toxicity and modest antitumor activity in patients with EGFR/HER2 co-expressing AGC who progressed after first-line chemotherapy.  

Cancer Research and Treatment

링크보기

22 2024

Identification of Potential Genomic Alterations Using Pan-Cancer Cell-Free DNA Next-Generation Sequencing in Patients With Gastric Cancer

Abstract   Background Molecular cancer profiling may lead to appropriate trials for molecularly targeted therapies. Cell-free DNA (cfDNA) is a promising diagnostic and/or prognostic biomarker in gastric cancer (GC). We characterized somatic genomic alterations in cfDNA of patients with GC.   Methods Medical records and cfDNA data of 81 patients diagnosed as having GC were reviewed. Forty-nine and 32 patients were tested using the Oncomine Pan-Cancer CellFree Assay on the Ion Torrent platform and AlphaLiquid 100 kit on the Illumina platform, respectively.   Results Tier I or II alterations were detected in 64.2% (52/81) of patients. Biomarkers for potential targeted therapy were detected in 55.6% of patients (45/81), and clinical trials are underway. ERBB2 amplification is actionable and was detected in 4.9% of patients (4/81). Among biomarkers showing potential for possible targeted therapy, TP53 mutation (38.3%, 35 variants in 31 patients, 31/81) and FGFR2 amplification (6.2%, 5/81) were detected the most.   Conclusions Next-generation sequencing of cfDNA is a promising technique for the molecular profiling of GC. Evidence suggests that cfDNA analysis can provide accurate and reliable information on somatic genomic alterations in patients with GC, potentially replacing tissue biopsy as a diagnostic and prognostic tool. Through cfDNA analysis for molecular profiling, it may be possible to translate the molecular classification into therapeutic targets and predictive biomarkers, leading to personalized treatment options for patients with GC in the future.

Annals of Laboratory Medicine

링크보기

21 2024

Concordance of ctDNA and tissue genomic profiling in advanced biliary tract cancer

Abstract   Background & Aims Recent advances in molecular profiling have enabled the identification of potential therapeutic targets for biliary tract cancer (BTC). However, in patients with BTC, molecular profiling is hindered by challenges in obtaining adequate tissue samples. Circulating tumor DNA (ctDNA) may offer an alternative to tissue-based analysis. Herein, we aimed to assess the concordance between ctDNA and tissue genomic profiling in a large cohort of Asian patients with advanced BTC, and to evaluate the feasibility of liquid biopsy in BTC treatment.   Methods This study included patients with systemic treatment-naive advanced BTC, treated at CHA Bundang Medical Center between January 2019 and December 2022. We enrolled patients with available baseline tissue-based next-generation sequencing, and sufficient plasma samples for ctDNA analysis (AlphaLiquid®100 fr|om IMBdx).   Results Among 102 enrolled patients, 49.0% had intrahepatic cholangiocarcinoma, 26.5% extrahepatic cholangiocarcinoma, and 24.5% gallbladder cancer. The concordance between intra-patient ctDNA and tumor tissue mutations revealed a sensitivity of 84.8%, and positive predictive value of 79.4%. ctDNA revealed targetable alterations in 34.3% of patients – including FGFR2 fusions, IDH1 mutations, microsatellite instability-high, ERBB2 amplifications, PIK3CA mutations, BRCA1/2 mutations, and MET amplifications. Notably, a novel FGFR2-TNS1 fusion was identified in ctDNA, which was not targeted in the tissue NGS panel. A high maximum somatic variant allele frequency in ctDNA was associated with poor prognosis after gemcitabine/cisplatin-based chemotherapy, in terms of both overall survival (p = 6.9 × 10−6) and progression-free survival (p = 3.8 × 10−7 ).   Conclusions Among patients with advanced BTC, ctDNA-based genotyping showed acceptable concordance with tissue genomic profiling. Liquid biopsy using ctDNA could be a valuable complement to tissue-based genomic analysis in BTC.

Journal of Hepatology

링크보기

20 2024

Clinical utility and predictive value of cerebrospinal fluid cell-free DNA profiling in non-small cell lung cancer patients with leptomeningeal metastasis

  Abstract   Leptomeningeal metastasis (LM) is a challenging complication of non-small cell lung cancer (NSCLC). Cerebrospinal fluid (CSF) cell-free DNA (cfDNA) analysis using next-generation sequencing (NGS) offers insights into resistance mechanisms and potential treatment strategies. We conducted a study fr|om February 2022 to April 2023 involving patients fr|om five hospitals in Taiwan who had recurrent or advanced NSCLC with LM. These patients underwent CSF cfDNA analysis using a 118-gene targeted panel for NGS, with comprehensive clinical data collected. Among 25 enrolled patients, 22 (88.0 %) had EGFR mutations, while three (12.0 %) had EML4-ALK fusion, KIF5B-RET fusion, and ERBB2 A775_G776insSVMA. CSF cfDNA sequencing of 27 samples (fr|om 25 patients) all confirmed their original driver mutations. Of total cohort, 18 patients (72.0 %) underwent intrathecal pemetrexed (ITP), with a median survival time of 7.4 months (95.0 % confidence interval, 3.3–11.6) fr|om the initiation of ITP to death. Among them, ten individuals (55.6 %) survived beyond 6 months. Notably, MET copy number gain (CNG) correlated significantly with survival time exceeding 6 months after ITP (p = 0.007). The coexistence of EGFR T790M and EGFR-independent resistance alterations was associated with shorter survival times after ITP, with a median survival time of 1.9 months compared to 9.9 months for those without EGFR T790M (p = 0.010). Our results highlight CSF cfDNA NGS's potential in LM resistance understanding and ITP efficacy prediction. MET CNG positively impacts survival for ITP recipients, whereas the coexistence of EGFR T790M and EGFR-independent resistance mechanisms leads to poor outcomes.  

Neoplasia

링크보기

19 2024

Profiling Cell Free DNA from Malignant Pleural Effusion for Oncogenic Driver Mutations in Patients with Treatment Naive Stage IV Adenocarcinoma: A Multicenter Prospective Study

Abstract Introduction Comprehensive next-generation sequencing (NGS) of non-small-cell lung cancer specimens can identify oncogenic driver mutations and their corresponding targeted therapies. Plasma cell-free DNA (cfDNA) genotyping is easy to perform; however, false negatives cannot be overlooked. We explored malignant pleural effusion (MPE), a rich source of cfDNA, as a non-inferior alternative to tumor tissues for genotyping.   Methods We conducted a prospective trial including 39 patients with newly diagnosed stage IV lung adenocarcinoma who presented with MPE. Tissue tests matching hotspot variants, including EGFR, ALK, and ROS1, were compared with the AlphaLiquid100 of PE-cfDNA.   Results Among the 39 PE-cfDNA samples successfully sequenced, 32 (82.1%) had a PE cell-block tumor content of < 10%. Standard tissue or cell-block testing for EGFR, ALK, and ROS1 identified 20 mutations (51.3%), whereas PE cfDNA identified 25 mutations (64.1%). Five EGFR mutations were observed in PE cfDNA but not in Cobas EGFR owing to coverage or insufficient tumor content issues. The overall rate of oncogenic mutations identified in the PE cfDNA was 92.3%, and the mutation distribution was as follows: even with a very low cfDNA input, high detection rates could be achieved. Otherwise, most patients harbored co-mutations. Comparison of pleural fluid NGS with traditional testing revealed differences in accuracy. We also followed up with patients with EGFR-sensitizing mutations who had a treatment response rate of 97.2% after 3 months.   Conclusions Genotyping of MPE supernatant cfDNA is feasible in clinical practice, in addition to plasma and tumor testing, to improve diagnostic yield and extend patients’ benefit fr|om targeted therapies.

Molecular Diagnosis & Therapy

링크보기